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We use time-of-flight and energy analysis techniques to measure in a vacuum the
charge, specific charge and stopping potential of primary and satellite droplets gen-
erated by electrosprays of tributyl phosphate solutions. This information, of interest
in itself, is subsequently analysed to obtain the following relevant parameters of the
jet emanating from the Taylor cone: the velocity of the fluid at the breakup point,
the voltage difference between the liquid cone and jet breakup location, and the most
probable wavelength for varicose breakup. A large fraction of the electrospray needle
voltage is used to accelerate the jet. Indeed, for the solutions of lowest electrical
conductivities studied here, the voltage difference between electrospray needle and jet
breakup location becomes approximately 90% of the needle voltage. In addition, the
pressure of the jet fluid at the breakup point is negligible compared to its specific
kinetic energy. The specific charge distribution function of the main droplets produced
in the varicose breakup is remarkably narrow. Hence, the limiting and commonly
accepted case of varicose breakup at constant electric potential is not consistent with
this experimental observation. On the other hand, a scenario in which the electric
charge is bound to the jet surface seems to be a good approximation to simulate the
effect of charge on capillary breakup. It is also found that the effect of viscosity on the
formation of droplets is paramount in electrosprays of moderate and high electrical
conductivity. We expect that these measurements will guide the analytical modelling
of cone-jets.

1. Introduction

The use of moderate electric fields to generate charged liquid droplets is a well-
documented practice. This technique is referred to as electrospray. Its ability to
produce beams of relatively monodisperse droplets with diameters as small as a few
nanometres is unmatched by other spraying methods. Electrospray is a most familiar
tool in the field of mass spectrometry (Fenn et al. 1989), as documented by the more
than one thousand research articles written every year on this subject. Other areas of
interest include electrostatic printing, nanoparticle technology and electric propulsion
(Huberman & Rosen 1974; Lenggoro et al. 2000; Gamero-Castafio & Hruby 2001).
The wide range of applications in which electrospray has proved useful has motivated,
especially during the last decade, a significant amount of activity aimed at studying
this phenomenon. In a typical experimental configuration, a liquid flow is fed through
a capillary needle, and a voltage difference between needle and a facing electrode
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is set. If the voltage difference and flow rate are adequate, a stable liquid meniscus
(Taylor cone) with a slender jet issuing from its apex is formed. Eventually, the jet
becomes unstable and breaks up, generating a spray of charged droplets. Due to the
geometric resemblance, the type of electrospray studied in this article is known as the
cone-jet mode (Cloupeau & Prunet-Foch 1990).

Despite the vast quantity of experimental data that appears in the scientific litera-
ture, few characteristics of the electrospraying process have been measured. This has
contributed to the proliferation of alternative models and theories aimed to explain
the behaviour of electrosprays. Although the complete set of differential equations
and boundary conditions that determine the dynamics of a cone-jet are well known
(Saville 1997), the complexity of this problem (disparity of length scales, complex
geometry with a free surface, time dependence of the jet breakup region, etc.) is such
that simplifying hypotheses need to be adopted in order to attempt analytical or nu-
merical solutions. However, because of insufficient experimental insight, models based
on competing hypotheses are found side by side in the literature (Fernandez de la
Mora & Loscertales 1994; Gafian-Calvo 1997a). This confusion is further aggravated
by the fact that the existing experimental measurements do not suffice to either com-
pletely support or reject some of these models. Hence, it is clear that the electrospray
community will greatly benefit from the measurement of additional and meaningful
electrohydrodynamic quantities. The first explanation for the lack of a diverse set of
experimental data is that the accurate measurement of most fluid-dynamic and elec-
tric variables of jets of submicrometric dimensions is difficult. A second, more subtle
contributing reason is that, although a varied phenomenology associated with the
electrospraying process can be recorded, the lack of theoretical knowledge about the
overall problem makes it difficult to translate this phenomenology into well-defined
electro-fluid-dynamic parameters.

Let us illustrate the above statements with some examples. The electric current
emitted by the cone-jet is its characteristic most frequently reported (Fernandez de
la Mora & Loscertales 1994; Chen & Pui 1997; Gafan-Calvo, Davila & Barrero
1997). Typically, it is compiled as a function of flow rate and physical properties
of the sprayed solution, and accurate measurement does not require excessive effort.
Although the electric current is a main property of the electrospraying process, it is
not a differentiating one: the leading and competing electrospray models predict the
same functional relation for the electric current (Fernandez de la Mora & Loscertales
1994 ; Gafian-Calvo 1997a; Cherney 1999).

The diameter of electrospray droplets can be measured with a variety of diagnos-
tic tools such as phase Doppler anemometers, aerodynamic size spectrometers, etc.
(Rosell-Llompart & Fernandez de la Mora 1994; Tang & Gomez 1994; Gafian-Calvo
et al. 1997). Most of these techniques use optical detectors, and thus are limited to
the measurement of droplets larger than a few tenths of a micron. Furthermore the
droplet diameter cannot be regarded as a primary characteristic of the cone-jet itself:
it is well known that, at fixed conditions, an electrified liquid jet generates a cloud of
droplets of varying size, and that several parameters related to the breakup process
determine the mean diameter of the distribution. Furthermore, although electrospray
models yield functional forms for the droplet diameter, or more properly for the char-
acteristic diameter of the jet, the differences between the predictions of conflicting
models are comparable to the accuracy with which droplets can be experimentally
sized. Thus, the same experimental data seem to fit different theories equally well.

The diameters of electrified jets are measured in several studies by means of high
resolution cameras (Gafian-Calvo 1997b). Only jets with diameters larger than a few
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microns can be studied in this manner, with a poor resolution in the micron range.
The quality of these measurements worsens when the analysed region approaches the
breakup zone, due to the high frequencies at which the jet evolves. Tang & Gomez
(1994) have succeeded in photographing the breakup region of heptane cone-jets. For
these relatively thick jets (roughly 15pum jet diameter), they measure a value of 1.9
for the ratio between the radii of main droplets and jet. This number is in agreement
with the value of 1.89 derived by Lord Rayleigh (1945) in his classical instability
analysis of inviscid and uncharged, capillary jets.

There are very few cases in which both the diameter and the charge of submicron
electrospray droplets are measured (see Javorek & Krupa 1996 for supermicron jets).
De Juan & Fernandez de la Mora (1997) use an experimental technique featuring
a differential mobility analyser and an aerodynamic size spectrometer in tandem to
measure the charge and size of droplets. Among other results, they find that the
distribution function for the droplet specific charge is narrower than the diameter
distribution. In the electrosprays studied by de Juan & Fernandez de la Mora (1997),
the fact that the specific charge of the fluid remains approximately constant during
the breakup reveals two important qualities: first, most of the electric current in the
final region of the jet must move in the form of convected surface charge, rather
than being conduction current; second, the breakup time must be much shorter than
the time required for an efficient redistribution of surface charge. This experimental
finding is in contradiction with the equipotential breakup hypothesis proposed by
several researchers (Lopez-Herrera, Gafian-Calvo & Peérez-Saborid 1999; Hartman et
al. 2000).

Finally, the measurement of the rate at which ions are field emitted from the surface
of the cone-jet can be used to estimate the maximum electric field normal to the jet
surface (Gamero-Castafio & Fernandez de la Mora 2000). However, the study of a
difficult problem such as electrospray through the more complex ion field evaporation
phenomena is, to say the least, a rather complicated task.

In this article we use stopping potential and time-of-flight techniques in elec-
trosprays containing primary and satellite droplets to measure the jet velocity and
diameter at its breakup point, its voltage with respect to the needle supporting the
cone-jet, the charge and diameter of individual droplets, and the most probable
wavelength for varicose breakup. The structure of the paper is as follows: after this
introductory section we describe the experimental arrangement, liquid solutions and
diagnostic techniques. We will briefly explain the fundamentals of the time-of-flight
and stopping-potential analysis. A detector used to measure both the charge and
specific charge of individual droplets is described in detail. The discussion of the
main experimental findings is given in §3. This section is divided in two parts: in
the first we list and analyse the measurements of the voltage drop along the cone-jet
and the diameter of the jet at the breakup point; in the second we take advantage
of the information yielded by the distribution functions of the specific charge of the
droplets to obtain conclusions about the jet breakup process, we solve a model of
varicose breakup in which the effect of surface charge is retained, and compare the
model’s predictions for the ratio between droplet and jet diameter with experimental
measurements. The article then ends with some brief conclusions.

2. Experimental

We have studied five solutions of tributyl phosphate, TBP, with electrical conduc-
tivities ranging from 2.3 x 107*Sm™! to 2.2 x 1072Sm™!. This liquid (Alfa Aesar
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Solution Solute Solute conc. (% wt) K (Sm™!)
TBP1 Emi-Im 29 2.20 x1072
TBP2 TBTP 1.5 8.53 x1073
TBP3 TBTP 0.15 1.64 x1073
TBP4 TBTP 0.050 5.34 x10~*
TBP5 TBTP 0.015 2.30 x10~*

TaBLE 1. Composition and electrical conductivity of the solutions electrosprayed. Emi-Im denotes
1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide and TBTP denotes tetrabutylammo-
nium tetraphenyl borate.
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FIGURE 1. Sketch of the electrospray source and vacuum facility.

98% purity) was chosen for its low volatility, a condition required to electrospray
liquids in vacuum. A second advantage of TBP is its moderate viscosity: very vis-
cous liquids, such as glycerol, have the tendency to generate electrosprays with a
breakup phenomenology that is poorly understood. Table 1 lists the name of each
solution, solute concentrations and conductivities. Electrical conductivities are de-
termined by measuring the electrical resistivity across the ends of a capillary tube
filled with the liquid solution. The ionic liquid 1-ethyl-3-methylimidazolium bis (tri-
fluoromethylsulfonyl)imide, was used for enhancing the conductivity of TBP1, while
tetrabutylammonium tetraphenyl borate was added to the remaining solutions. The
surface tension, density, dielectric constant and viscosity coefficient of pure TBP are
7 =0.028Nm™!, p =976kgm, ¢ = 8.91 and u = 0.00359 Pas™' respectively (Rid-
dick, Bunger & Sakano 1986). We will assume that the modest solute concentrations
of the solutions in table 1 do not affect significantly the physical properties of TBP.
Figure 1 shows a schematic of the vacuum facility and electrospray source employed
in these experiments. The electrospray source is mounted inside a 5 cm diameter cross
(electrospray chamber), joined to a 1 x 1.3m cylindrical tank (vacuum tank). The
electrodes used to analyse the sprays are installed in this larger chamber. A 25cm
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FiGure 2. Typical stopping-potential curve for an electrospray of solution TBP2.

diffusion pump backed by a mechanical pump evacuates the system down to 1073 Pa.
The design of the electrospray source is simple: a plastic reservoir contains the TBP
solution, which is fed to the electrospray needle through a fused silica capillary. The
liquid flow rate is varied by changing the pressure inside the solution reservoir, and
measured by means of a bubble flowmeter connected in series to the fused silica line.
The flowmeter is a tube of known diameter, in which a bubble of air can be inserted.
The bubble moves with the speed of the flow, and thus the flow rate is equal to the
velocity of the bubble multiplied by the area of the tube. The electrospray needle is
also a fused silica capillary, with one of its ends connected to the flowmeter while the
other is shaped into a cone (needle tip) and made electrically conductive by depositing
a layer of tin oxide on its surface. An extractor electrode with a small orifice faces
the needle tip. The distance between the tip of the needle and the facing extractor is
approximately 2.5 mm. The diameter of the extractor’s orifice is roughly 0.8 mm. In
order to form a cone-jet, the TBP solution is fed to the needle and an appropriate
voltage difference between needle and extractor (typically 1600V), is set. The shape
of the cone-jet is monitored with a microscope connected to a VCR system. In our
experiments the needle is charged positively with respect the extractor, and therefore
the net charge of the emerging droplets is positive. The beam of droplets exists the
needle—extractor region through the extractor orifice, and enters the large vacuum
tank where it is subsequently analysed. The experiments were always carried out at
room temperature (approximately 24 °C).

A detailed description of the additional arrangement (collector electrodes where
the current of the beam is measured, power supplies, electronics, connections, etc.)
required for performing stopping-potential and time-of-flight measurements of the
electrospray beam was given elsewhere (Gamero-Castafio & Fernandez de la Mora
2000; Gamero-Castano & Hruby 2001). Thus, we will simply outline the experimental
techniques here. Figure 2 shows the stopping-potential curve associated with an
electrospray of solution TBP2. The flow rate and electric current of this spray are
4.1 x 1072 m?*s~! and 66nA. We plot the electric current measured at a grounded
collector facing the beam, approximately Scm from the extractor (the collector is
located inside the large vacuum tank), as a function of the electrospray needle
voltage referred to ground, Vy. The voltage difference between needle and extractor
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FIGURE 3. Time-of-flight curve for the same spray as in figure 2.

is kept fixed. Therefore both the electrospray inside the needle—extractor region, and
the electric current in the form of positively charged droplets exiting the extractor,
remain unchanged and independent of Vy. When the potential of the needle is well
below ground the positive droplets cannot reach the collector and no current is
measured in figure 2. Conversely, for large positive values of Vy the whole current of
the electrospray beam is measured at the collector. Main and satellite droplets coexist
in this spray: the current associated with the former appears in a range of needle
voltage centred around —15V, while satellite droplets are observed around 704 V.
When analysing stopping-potential curves of similar sprays, Gamero-Castafo (1999)
erroneously associated the smaller step appearing at larger Vy with the products
of in-flight Coulomb fissions of main droplets (see Fernandez de la Mora 1996 for
a discussion about Coulomb fissions): it seemed unlikely that satellite and main
drops, generated at the same point in the jet breakup, could have such disparate
stopping voltages. We will show in the paragraphs below why satellite droplets, rather
than in-flight Coulomb explosions, are responsible for this smaller step. Continuing
with the description of figure 2, we take the value of Vy at one half of the total
electric current associated with a given type of droplet as the representative stopping
potential, Vg, of that type of droplet. Our definition of Vg, placed at the centre of
the error-function-like stopping-voltage distribution, is somewhat arbitrary: there is
an important spread of stopping potentials among droplets of the same type, and the
values of Vg for either main or satellite droplets could have been placed closer to the
beginning or end of each step. A definition with more physical value would require a
detailed description of the breakup process, which is unavailable to us at this point.
Thus, in figure 2, we take —15V and 704 V as the ‘representative’ stopping potentials
of main and satellite droplets respectively.

The time-of-flight wave associated with the same TBP2 electrospray is shown in
figure 3. After exiting the needle—extractor region, the charged droplets enter the large
vacuum tank in figure 1, where the external electric field is null (extractor, vacuum
chamber and collector are grounded (earthed); there is still a small electric field
associated with the space charge of the beam). Thus, the axial velocity of the droplets
remains constant. The whole current of the beam, I, is measured at a collector placed
inside the large tank. At a reference time (tr = 0 in figure 3) the electrospraying
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FIGURE 4. Distribution function for the specific charge of the electrospray beam
shown in figures 2 and 3.

process is suddenly interrupted, the rear front of the beam moves toward the collector
and the current arriving at it is recorded versus time, yielding the time-of-flight wave
of figure 3. Note that the same two types of droplets observed previously in the
stopping-potential curve appear now in figure 3. The relevant parameter yielded by
the time-of-flight curve is the specific charge of the electrospray droplets. Specific
charge and time of flight are related by

q 1 L\’
m = 2V — V) (m) ’ 1)

where g and m are the charge and mass of the droplet, Vy — Vs and ¢ its acceleration
voltage and time of flight, and L the length of the flight path. There is a finite spread
of the time of flight, and accordingly a spread of the specific charge, for the satellite
and main droplets. We will define the specific charge of each type of droplet as the
mean of its distribution function. We can construct such distribution by changing in
the time of flight wave, I(tf), the variable tr for q/m, equation (1), and then taking
the derivative, pdf(q/m) = dI /d(q/m). The specific charge distribution for the spray
in figures 2 and 3 is shown in figure 4. The mean and the standard deviation of the
specific charge of a type of droplet are given by

Iy L
()= [[ swurcoad [ [[ o] o
I I 1/2
s (%) = {[ ; (x— (61/m>)2pdf(x)dx] / [/I pdf(x)dx” : (3)

For the case of the main droplets, the lower limit of integration is 0, [y = 0, and the
upper limit is a value of the specific charge equidistant from the main and satellite
peaks. The mean specific charges of the main and satellite droplets in figure 4 are
14.1Ckg™" and 73.3Ckg™" respectively. In these experiments, the evaporation of
liquid from droplets in flight is negligible, and can be ignored when computing the
specific charge (Gamero-Castafio & Hruby 2001).
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FIGURE 5. Schematic of the capacitive detector used to measure both the charge and specific
charge of electrospray droplets.

Now we can ratiocinate why the smaller steps in figures 2 and 3 are associated
with satellite drops (produced in the jet breakup), rather than with the products
of Coulomb fissions. When a main droplet that is charged above its Rayleigh limit
explodes in flight, two types of droplets are produced: a larger fragment containing
most of the mass of the original drop and with less specific charge than it, and a few
smaller drops with increased specific charge. Thus, if there were Coulomb fissions in
these sprays, three distinct steps with the following ordering of specific charges would
be recorded in the time-of-flight waves: a step associated with the smaller products
of Coulomb explosions, a second one associated with unexploded main droplets, and
a third step due to the larger products of Coulomb fissions. But we only observe
two different types of droplets in the time-of-flight waves, and therefore the Coulomb
fission scenario is not correct.

Both the charge and specific charge of individual droplets can be measured with
the capacitive detector shown schematically in figure 5. Hogan & Hendricks (1965)
used a similar design, while a more modern and sensitive variation has been used by
Fuerstenau & Benner (1995) to measure the mass of viruses. Returning to figure 5,
the detector, with its axis roughly aligned with the vertex of the cone-jet, intercepts
the electrospray beam. Depending on the aperture of the collimating electrode and
the number density of the droplets, a single droplet can be sampled and forced to fly
through the hollow metallic cylinder. While this droplet remains inside the cylinder,
the potential of the cylinder, Ve, is

q

Ve= g 0
where Cc is the capacity between cylinder and ground. This is strictly true in the case
of a cylinder isolated from ground. However, the hollow cylinder depicted in figure 5
is connected to ground through a resistor Q, and the passage of a droplet through
its interior translates into two sharp V¢ peaks. These peaks are inverted and their
tips coincide with the time at which the droplet enters and exits the hollow cylinder.
To obtain the evolution of the potential of the hollow cylinder we use the ‘equivalent
circuit’ sketched in figure 5, and simulate the entrance and exit of the charged droplet
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FIGURE 6. Voltage response of the capacitive detector to the passage of a charged droplet through
its interior.

by the following impulsive current function:
Iy = (e = u(t = T)] = 2 [u(e = tr) —u(t — t = 1)1 (5)

Here, u(t) stands for the Heaviside function and tr is the time of flight of the
droplet through the cylinder. T is an arbitrary small time, limited in our system
by the ‘entrance’ time of the droplet T ~ D;/v (screening electrodes are located at
the entrance and exit of the cylinder in order to reduce the characteristic length for
the entrance time, D). The response of the cylinder voltage to I; is given by

Ve = 22 o)1 — exp(—1/QC2)) — u(t = T)(1 — exp(—{i — T)/QC,))]
~ TR ult — 1)1 — exp(—(t — 17)/2Cy)
—ult — tp — T)(1 — exp(—(t — ty — T)/QCs))] ©

when the characteristic times of the problem are such that T < QCp < tr. The
evolution of V¢ resembles a succession of two inverted peaks of exponential increase.
The maximum and minimum of V¢ are located at times equal to T and tr + T,
respectively. Thus, from the position of the peaks we can deduce the time of flight
tr, and from the droplet’s time of flight, the length of the cylinder and acceleration
voltage we obtain its specific charge (see equation (1)). We have two options to
compute the charge of the droplet. First, if T <« QC, q is related to the maximum
of the cylinder voltage, V¥, by

q=CeVe™. (7)
Second, ¢ is also given by the following integral, as can be deduced directly from
the differential equation for V¢ :
L[ Ve()
== dr. 8
=3[ %9 ®

We will use (8) to measure the charge of droplets because the integration of V¢
helps filter out the noise associated with the experimental signal. Figure 6 shows a
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FIGURE 7. Stopping-potential curves of TBP2 electrosprays taken at different flow rates.

typical signal proportional to V¢ resulting from the passage of a droplet. We use an
inverting amplifier to amplify V. The entrance of the droplet into the hollow cylinder
at t ~ 0 is translated into a sharp raise of V¢ (the peak in figure 6 is actually negative
because of the inverting amplifier), followed by a relaxation (the hollow cylinder is
connected to ground through a resistor). V¢ features a second peak of the opposite
sign, followed by a relaxation, when the droplet exits the hollow cylinder. In this case,
the capacitive detector yields values of 2.81 x 10~ C and 0.68 C kg~! for the droplet’s
charge and specific charge. Its diameter,

m 6 1/3
D= <q> , ©)
is 4.32 pm.

Before we proceed with the presentation and interpretation of the experimen-
tal results, an important distinction between stopping-potential, time-of-flight and
capacitive-detector data must be pointed out. The first two techniques yield results
representative of the whole electrospray beam (in both cases the complete beam is
sampled), while each capacitive-detector measurement corresponds to an individual
droplet, sampled at a fixed beam location. In the following section we will use the
capacitive detector to estimate mean properties of droplets. We will compute these
mean properties (charge, diameter and specific charge) by taking the averages of
several samples (typically 30 droplets).

3. Results and discussion
3.1. Voltage drop and diameter of the jet

Figures 7 and 8 contain stopping-potential and time-of-flight spectra associated with
solution TBP2. Each curve in these figures is associated with a different liquid flow
rate Q (the values of some liquid flow rates are collected in table 2). These curves
illustrate the phenomenology related to the generation of electrospray droplets. For
low flow rates, or alternatively for low electrospray currents (I < 30nA), only main
droplets are formed during the jet breakup. This is inferred from the single step of
both stopping-potential and time-of-flight curves. At larger flow rates satellite drops
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FIGURe 8. Time-of-flight spectra of TBP2 electrosprays.

also emerge from the breakup process. The appearance of satellites is observed in
figures 7 and 8 in the form of a second, new, step in the spectra. The fraction of
charge emitted as satellite droplets grows with the flow rate, until a new spraying
pattern eventually emerges at I ~ 90nA. This capillary breakup regime is usually
known as kink breakup mode, and is characterized by the onset of large lateral
oscillations of the jet (Hartman et al. 2000). Gamero-Castafio (1999) has studied
in detail the information yielded by the stopping-potential curves associated with
the breakup regime in which only main droplets are emitted. He finds that, at low
flow rates, a fair fraction of the stopping potential is used in the conversion of
conduction current into convected jet surface charge, and thus Vg can be regarded as
an irreversible voltage loss. A few lines describing the different regions of the cone-jet
are needed to clarify both this statement about the irreversible voltage loss and the
forthcoming analysis. The physical models aimed at explaining the mechanism of
current transport in cone-jets consider three different regions (Fernandez de la Mora
& Loscertales 1994; Gafian-Calvo 1997a; Cherney 1999): the cone, an intermediate
zone at the beginning of the jet, and the rest of the liquid filament. The cone is
regarded as nearly electrostatic because of its large cross-section, the electric current
being transported by bulk conduction through it. As the cone tip is approached,
internal electric fields develop, and charge from the inner liquid is injected on the
surface, so that the current is driven simultaneously by bulk conduction and surface
charge convection. Eventually, the last term becomes dominant and the total current
is convected surface charge. We term this intermediate section a transition region,
and the irreversible voltage loss is roughly the voltage drop along it. We qualify this
voltage drop as ‘irreversible’ because it is mostly used to convert conduction current
into convected surface charge, rather than to accelerate the fluid. Beyond this point
the jet continues to accelerate, forced by the tangential electric field acting on its
surface charge. We will show in the following paragraphs that in this portion of the
jet extending from the transition region to the breakup location, the electric potential
energy is mostly converted into kinetic energy of the fluid. Thus, this section can be
properly qualified as reversible. A significant finding of Gamero-Castafio (1999) is the
independence of irreversible voltage loss from liquid flow rate, which is compatible
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Solution O(m?s™) I(nA) (Ckg™) (Ckg™) Vs main (V) Vs sat. (V) Vy — Vg (V) Vo (V) vp(ms1)
TBP! 7.5 x 10713 45 59.1 2259 110 508 649 1469 252
TBP1 9.7 x 10713 50 50.2 2393 85 508 620 1469 232
TBP1 1.16 x 10712 54 43.8 2283 52 493 598 1469 219
TBP2 1.62 x 10713 43 26.9 139.4 143 607 718 1547 176
TBP2 212 x 10712 53 21.7 121.9 75.8 631 751 1547 171
TBP2 3.11 x 10712 62 16.7 118.1 21 675 782 1547 159
TBP2 4.10 x 10712 66 14.1 732 —15 704 876 1547 159
TBP2 509 x 1012 67 12.0 68.2 —22 702 836 1547 145
TBP3 6.53 x 10712 47 7.0 19.1 301 754 1018 1562 100
TBP3 8.62 x 10712 53 5.7 17.8 233 825 1103 1609 100
TBP3 1.28 x 1071 62 42 15.5 198 872 1125 1609 89
TBP3 2.33 x 107! 83 2.8 10.0 91 963 1310 1734 83
TBP4 2.06 x 107! 45 2.15 6.44 311 810 1060 1766 57
TBP4 2.86 x 107! 54 1.77 5.86 273 882 1145 1766 56
TBP4 3.67 x 107! 62 1.50 5.80 238 958 1208 1844 54
TBP5 4.00 x 1071 41 0.90 2.35 362 891 1221 1624 39
TBP5 5.26 x 10711 48 0.78 2.18 361 1019 1385 1703 40
TBP5 7.83 x 101! 57 0.64 1.97 348 1105 1468 1766 38
TBP5 9.56 x 10! 62 0.57 1.84 290 1232 1657 1766 39

TaBLE 2. Voltage drop and velocity at the jet breakup location, and other relevant parameters of the electrospraying process.
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with the scaling for the characteristic diameter of the transition region predicted by
Gafian-Calvo (1997a), D ~ Q'/2/K /8,

In this article we are mostly interested in the intermediate flow rates in which
both satellite and main droplets are produced because the voltage difference between
the electrospray needle and the jet breakup point, as well as the velocity of the jet
at this location, can be inferred when both types of droplets are emitted. To show
this, let us recall the expression for the stopping potential of an electrospray droplet
(Gamero-Castafio 1999). Upon detachment from the jet, the sum of kinetic and
potential energy of the droplet remains constant, gV + %mv2 = C. Furthermore, C
is exactly zero when the potential field is such that the droplets are stopped at the
surface of the collector, since the velocity is null at the surface of the collector and the
voltage of this electrode is taken as the reference value. Thus, adding and subtracting
the potential of the needle when C is identically zero, and defining the potential of
the needle when C = 0 as the stopping potential Vg, we obtain

Vs = (Vi — V) — %Tvg, (10)

q

where the subscript ‘B’ identifies parameters at the breakup point. The term within
brackets is the voltage difference between the base of the Taylor cone and the
breakup point, a meaningful characteristic independent of Vy. This independence
holds as long as the voltage difference between needle and extractor, Vp, is such
that a stable cone-jet is formed. Typically, Vy can be varied within a few hundreds
volts without compromising the stability of the cone-jet. At lower V, a different
electrospraying regime called the dripping mode is induced, while a highly stressed
mode characterized by the formation of multiple jets is typical of larger Vo (Cloupeau
& Prunet-Foch 1990). Note that time-dependent contributions to the electric field in
the proximity of the breakup location are neglected in (10). We also will consider that
the velocity and electric potential of the fluid remain constant upon its detachment
from the jet. This approximation is justified because the difference in either voltage
or kinetic energy per unit charge between the emerging droplet and the jet must
be of the order of the change during the breakup in surface energy per unit charge,
10Q/(RgI), and we will show in following paragraphs that this group is a small quantity
compared to either %(m/q)vlz3 or Vy — V. Furthermore, because main and satellite
droplets are generated at the same jet location, we will take the values of Vy — Vp
and vp associated with both types of droplets to be the same.

Once the specific charge and the stopping potential of a droplet have been measured
with the time-of-flight and stopping-potential techniques, (10) becomes an algebraic
equation with two unknowns, Vy—V3 and vg. Because two independent equations, one
for satellites and another for main droplets, can be set, there is sufficient information
to determine both Vy — Vp and vg. We have determined in this way the voltage
drop along the cone-jet and the velocity of the fluid at the breakup location for
several electrosprays. Table 2 collects the values of the relevant jet parameters. The
electrospray flow rate, measured with the bubble flowmeter, and the electric current
are given in the second and third columns. They are followed by the specific charge
of main and satellite droplets, and their stopping potentials. The values of Vy — V3
and the voltage difference between needle and extractor, Vy, appear in the eighth and
ninth columns. Vj is the available voltage for the electrospraying process. The large
fraction of V, spent in accelerating the jet is noteworthy. For example, Vo = 1766 V
for the last row of solution TBPS, and as much as 1657V is used to accelerate the
jet. For the most-conducting solution, TBP1, Vy = 1469V and the voltage decrease
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in the jet can be as large as 649 V. We will see in the following paragraphs that a fair
fraction of this voltage drop is spent reversibly, i.e. the potential decrease is mostly
transformed into droplet kinetic energy. In fact, the larger the conductivity, the more
correct this statement is. The last column collects the velocity of the fluid at the
breakup location.

We can confirm independently the validity of the experimental values of Vy — Vp
and vp given in table 2 using the momentum equation for the jet. The following
relation is a good approximation for the momentum balance in the reversible section
of the jet, downstream of the transition region:

d [ pv?

where E, is the tangential electric field acting on the surface of the jet, and ¢ is the
volumetric charge of the jet. Because in this part of the jet £ remains approximately
constant, (11a) can be integrated to obtain the algebraic equation

P
2
where ¢ is the electric potential and here C a constant of integration. Finally, using
Q = nR*v and I = £Q, equation (11b) can be rearranged to yield
1 I’
=f@v(x)2+g o 5
21 I [R(x) 8gQ
In this expression we have split the pressure term into its capillary and electric com-
ponents. The variable x stands for a generic position along the jet axis, downstream
of the transition region; A stands for a constant of integration. It is important to gain
a better insight into the relative weights of the kinetic, capillary and electric terms in
the right-hand side of (11c¢), and how they vary along the jet axis. For that purpose
we utilize the scaling law for the electric current (Fernandez de la Mora & Loscertales

1994):
12
=10 (P2 ) = fom (12)

to eliminate I from (11c¢), and make the resulting equation dimensionless using the
characteristic jet radius rj; (Gafian-Calvo 1997a) and irreversible voltage loss V*
(Gamero-Castano 1999):

2 173 1/6
* Y . o) 12 R(x
" =\KGpa)n = = 13a,b

(K(P«So)l/z) > o (n“yK) ", 1) " (13a,b,c)

+p+ ¢l =C, (11b)

[Vy — V(x)] — A R(x)| . (11c)

_ 2/3 2/3,1/2
e L N CNEY)
4 Ve 2f(e) x(x) fle) x(x) 8n¥
The terms appearing on the right-hand side of (13d) are the kinetic, capillary and
electrostatic pressures respectively; ¢ is the dielectric constant of the liquid, ¢ = 8.91
for TBP; f(e) is the proportionality constant relating the electrospray current and
the dimensionless flow rate #, f(¢) = 6.8 for TBP (Gamero-Castafio 1999). The
dimensionless flow rate # is typically of order one. In the reversible part of the jet,
the dimensionless radius y is maximum at its boundary with the transition region,
and is a monotonic decreasing function downstream. Figure 9 plots the right-hand
side of equation (13d) as a function of y for n = 1 and f(¢) = 6.8. Note that this
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FIGURE 9. Representation of the different terms in equation (13d) as a function of the
dimensionless radius .

function is identically 0 for y = 1.51. Thus, if the reversible part of the jet started at
a radius such that y = 1.51, the term A would coincide with the voltage drop across
the transition region. For the case of TBP, the ratio A/V" is approximately constant
(Gamero-Castanio 1999). Note also that it is very unlikely that the reversible part of
the jet starts at y > 1.33, since that would indicate that the pressure at the jet would
become negative. Although equation (13d) itself does not yield information about
the value of y at the breakup location, we can infer the jet radius at this point from
the liquid flow rate and our measurement of vg. The dimensionless jet radii at the
breakup point, y(B), computed in this way, are given in table 3. Notice that y(B)
is typically 0.5. It is observed in figure 9 that for y ~ 0.5, the kinetic energy of the
fluid becomes about 92% of the right-hand side of (13d). In other words, most of
the voltage drop along the reversible part of the jet is spent in accelerating the fluid.
It is also clear that the previous statement about %(m/q)v% being much larger than
1yQ(Rgl) is also correct.

Let us now use the data from table 2 to check whether they are consistent with the
equation of conservation of momentum for the jet. We will compute the right-hand
side of (11c) using the measurements of Q, I and the radius of the jet at breakup,
and plot this quantity versus Vy — V. According to (11c¢), a linear relation with unity
slope between these points is necessary to validate our measurements of Vy — Vg and
vg. We list in table 3 the voltage drop, and inertial, capillary and electric pressure
terms at the jet breakup point associated with the data from table 2. We have used
the characteristic voltage V*, (13a), to make these parameters dimensionless. We
do not rely on the scaling law (12) to compute the three terms on the right-hand
side of (11c), but we use the direct measurements of I, Q, and Rp. Figure 10 plots
the voltage difference between electrospraying needle and breakup point, versus the
addition of the three terms on the right-hand side of (11c¢) (again, we point out that
V* is used to make dimensionless these values). The linearity of the data, in such
wide range of electrical conductivities and flow rates, is noteworthy. More interesting
is the fact that the slope, 0.95, is close to 1, as expected. Note that the interception
with the ordinate axis, with a value of 16.8, is associated with the irreversible voltage
drop in the transition region of the cone-jet, A/V*. A/V* was previously found to be
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Vy—"Vg Capillary ~ Electric
Solution  Q(m?®s™!) Rg(pm) 1B Vv Kinetic term pressure pressure
TBP1 7.5 % 1071 0.031 0.49 90.4 72.7 2.1 0.1
TBP1 9.7 x 10713 0.036 0.51 86.4 70.9 20 0.1
TBP1 1.16 x 10712 0.041 0.52 83.3 69.8 20 0.1
TBP2 1.62 x 10713 0.054 0.50 73.0 57.5 1.9 0.1
TBP2 2,12 x 10712 0.063 0.51 76.3 58.3 1.8 0.1
TBP2 3.11 x 10712 0.079 0.52 79.5 63.0 1.8 0.2
TBP2 4.10 x 10712 0.091 0.53 89.0 71.5 1.9 0.2
TBP2 5.09 x 10712 0.10 0.55 87.0 79.1 2.0 0.2
TBP3 6.53 x 10712 0.14 0.50 59.7 39.8 1.5 0.1
TBP3 8.62 x 10712 0.17 0.50 64.7 46.5 1.6 0.1
TBP3 1.28 x 1071 0.21 0.53 66.0 46.7 1.5 0.2
TBP3 2.33 x 10711 0.30 0.55 76.8 55.5 L5 0.3
TBP4 2.06 x 1071 0.34 0.55 42.8 28.7 L5 0.1
TBP4 2.86 x 10711 0.40 0.56 46.2 32.1 1.4 0.2
TBP4 3.67 x 1071 0.46 0.57 48.8 33.7 1.4 0.2
TBP5 4.00 x 1071 0.57 0.58 37.2 22.6 1.4 0.1
TBP5 526 x 1071 0.65 0.57 422 26.1 1.4 0.2
TBP5 7.83 x 1071 0.81 0.59 447 29.3 1.4 0.2
TBP5 9.56 x 107! 0.88 0.58 50.5 35.6 1.5 0.2

TaBLE 3. Jet breakup parameters required to test (11c). Notice that the values in the fifth to eighth

columns are made dimensionless using V™.
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FiGure 10. Validation of the measurements of Vy — Vp and vp using the data in table 3 and
equation (11c¢).

constant, independent of either the liquid flow rate or electrical conductivity (Gamero-
Castaiio 1999). The good correlation observed in figure 10 supports the validity of
the experimental data in table 2. Furthermore, numerical and analytical models of the
cone-jet should yield solutions for these well-defined electro-fluid-dynamic parameters.
Hence, their comparison with our experimental data for Vy — V and vp will allow
the confirmation or rejection of these electrospray theories.
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FIGURE 11. Jet diameter at the breakup point versus rj.

The radii of the jets at their breakup points can be used to test the predictions of the
two more widely accepted electrospray models. Fernandez de la Mora & Loscertales
(1994) originally proposed that, for electrosprays of moderate- and high-conductivity
solutions such as those studied here, the radius of the jet emerging from a Taylor
cone should be equal to the characteristic length ry:

o\ 1/3
= (%) (14

multiplied by a function of the dielectric constant of the liquid. The same result is
defended by Gafian-Calvo et al. (1997) in an independent theoretical analysis. More
recently, Gaflan-Calvo (1997a) maintains that the quantity r¢, defined in (13b), is the
correct scaling length for the jet radius. Before we match these two scaling laws with
our data for the radius of the jet, a few comments are necessary. First, for a given
liquid the ratio ry/r;; depends on small powers of Q and K, which makes difficult a
comparison between the two theories. Second, both (13b) and (14) are defined as the
characteristic radius of the transition region where the conduction current becomes
convected surface charge. However, the jet radius at the breakup location is smaller
because the fluid is continuously accelerated along the jet. Thus, although Rp could
be of the order of rj or r(;, Rg does not have to be, in principle, strictly proportional
to either length. Despite this, Chen & Pui (1997), Gafan-Calvo et al. (1997) and
de Juan & Fernandez de la Mora (1997) have found that the radii of electrospray
droplets fit well the relation Rp = G(e)ryp, and thus these experimental findings
support Fernandez de la Mora & Loscertales’s (1994) scaling law. Rosell-Llompart &
Fernandez de la Mora (1994) also found that the radii of electrospray droplets scales
very approximately with ry, but they noticed a scattering of the values of G(¢) which is
attributed to the effect of inertia and viscosity on the jet dynamics. That inertia must
be indeed important for the determination of Rp is apparent from the relative weight
of the kinetic, capillary, and electric terms in table 3. On the other hand, though in
the work of Gafian-Calvo (1997a) the dynamic of the jet is analysed, the breakup is
not considered either. Although Gafian-Calvo cannot predict precisely where the jet
ends, he is still able to ratiocinate an expression for Rg, namely Rg ~ 0.6r..
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FIGURE 12. Jet diameter at the breakup point versus rg.

Figure 11 plots R versus ry. Note that for each TBP solution, a straight line fits
well the Rg, ri data. Each fitting has a non-negligible interception with the ordinate
axis, and their slopes increase with the conductivity of the solution. The resulting
scatter in the value of G(8.91) (we find an average value of 0.25 for G, with a standard
deviation of the data relative to their average of 9.3%) could be due to the effects of
inertia and viscosity as shown by Rosell-Llompart & Fernandez de la Mora (1994).
The theory of Gafian-Calvo (1997a) is tested in figure 12. Rp scales well with r,
especially for the four less-conducting solutions. The interceptions of the fitting are
always small, and their slopes practically coincide and are very similar to the value
of 0.6 predicted by Gaiian-Calvo (1997a).

3.2. Varicose breakup of viscous, charged jets

Stability analyses of capillary jets yield good agreement between experimental and
model results. When the shape of a capillary cylinder in equilibrium is distorted
by a small sinusoidal perturbation, the disruption may grow, or die out, depending
on the ratio between the perturbation wavelength and cylinder diameter. Several
authors have investigated the effect of electrification on the breakup of capillary jets.
Saville studies the cases of a charged jet in the absence of an external electric field
(Saville 1971a) and an uncharged jet in a uniform tangential field (Saville 1971b).
The problem of a charged jet immersed in a tangential electric field is analysed by
Mestel in the limits of high (Mestel 1994) and low Reynolds number (Mestel 1996).
The interpretation of the breakup of cone-jets based on these theoretical results is
difficult, for not much is known about the actual conditions under which electrospray
droplets are formed. The recent work of Lopez-Herrera et al. (1999) is more oriented
to actual cone-jets, and considers relevant issues such as the determination of the most
unstable wavelength, the generation of satellites or the distribution of mass and charge
between main and satellite droplets. When these authors model the effect of electricity
on the jet breakup, they consider the liquid to be a perfect conductor. Accordingly,
the jet boundary becomes an equipotential surface in their model. However, this
hypothesis, as valid as any other from a mathematical point of view, might not be
fulfilled in cone-jets of dielectric liquids. The experimental evidence offered by de
Juan & Fernandez de la Mora (1997) indicates that the specific charge distribution
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FIGURE 13. Capacitive detector waves for several droplets of the same electrospray.
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(15)

of the main droplets is narrower than their radius distribution. This observation is
incompatible with the equipotential hypothesis, which predicts that the distribution
in specific charge is approximately two times wider than the distribution in radius.
If the liquid were a perfect conductor, the main droplet’s specific charge would be
inversely proportional to the square of its diameter. In this case the relative deviations
(we use this figure to characterize the width of a distribution) of the specific charge
and radius distributions and related by

da/m) _ ,3(R) <5(R)>2

{q/m) (R) (R)

The measurements taken with the capacitive detector support de Juan & Fernandez
de la Mora’s findings with increased resolution. Figure 13 collects several capacitive
detector spectra associated with droplets of an electrospray of solution TBPS, at fixed
flow rate Q = 7.83 x 10~ m*s~!. Each curve is the trace associated with a single drop
of the same electrospray, and only droplets travelling in a small and fixed location
within the beam are sampled. Note that, despite the fact that the times of flight of the
droplets are basically the same (the time of flight being the difference in time between
the tips of the peaks), the areas of the peaks are quite different (the areas of the
peak being proportional to the net charge of the droplet). Hence, the specific charges
of different droplets appear to be constant, while their charges and diameters vary
noticeably. Specifically, the relative deviations of the specific charges and diameters
of 30 droplet samples of the spray in figure 13 are 3.6% and 11% respectively.

Our time-of-flight curves are also in contradiction with the equipotential hypothesis.
Using the methodology outlined in §2, we have computed the relative deviation of
the specific charge distributions of every time-of-flight wave recorded. These data
are compiled in figure 14. Flow rates below and above the onset of satellite droplet
formation appear in figure 14. Notice that the relative deviations are remarkably low,
typically 8%. The relative deviation for the lowest flow rate of TBP2 is as small as
5.5%. In fact, it can be argued that the data plotted in figure 14 are overestimates
of the relative deviations of the electrosprays: because the entire beam is being
measured at the time-of-flight collector without the help of focusing lenses, droplets
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FIGURE 14. Relative deviation of the specific charge of main droplets
versus dimensionless flow rate 7.

travelling on the outer part of the spray intercept the collector with a considerable
radial velocity. Although this radial velocity is mostly induced by the space charge
of the spray, one can imagine that a fraction of the axial kinetic energy of the
droplets is also converted into radial kinetic energy. Comparable data dealing with
the radius distribution function of similar sprays can be found in the literature. The
relative deviations of the radius distributions measured by de Juan & Fernandez de
la Mora (1997) are between 8.5% and 13%. The three narrowest radius distributions
given in figure 3(a) of Rosell-Llompart & Fernandez de la Mora (1994) have relative
deviations of 8.5%, 12% and 13%. Relative deviations between 9.0% and 12.2% are
obtained from figures 5(a) and 6 of Chen, Pui & Kaufman (1995). Thus, the radius
distributions are wider than the specific charge distributions.

We conclude that the breakup of cone-jets of dielectric liquids does not occur at
constant electric potential. Nevertheless, reliable calculations of the breakup require
a simplified and satisfactory model for the distribution of charge in the jet. After
observing the narrowness of the time-of-flight spectra, one is tempted to consider
the limiting and simple case of jet breakup at constant volumetric charge. However
this hypothesis is not appropriate either, since it does not account for the noticeable
difference in specific charge between main and satellite droplets. We propose that
among the scenarios that can be easily implemented in calculations of jet breakup,
that of charge bounded to the surface resembles best the phenomena occurring in
real cone-jets. In this hypothesis the net charge remains on the surface of the jet,
no transfer of charge is allowed between the liquid bulk and its surface, the electric
field inside the jet is negligible, and convection of surface charge dominates over
bulk and surface conduction. We will show that this hypothesis is consistent with
the observed narrowness of the specific charge distribution for the main drops, while
allowing for a different distribution of specific charge between main and satellite
droplets.

In the following paragraphs we extend Chandrasekhar’s analysis to include the
effect of surface charge on the capillary breakup of viscous jets (Chandrasekhar
1981). Three limiting cases will be solved: charge bounded to the jet surface, constant
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volumetric charge, and equipotential jet. We aim to investigate the differences and
similarities resulting from these three hypotheses.

Let us consider a uniform infinite cylinder of an incompressible, viscous, electrically
charged fluid, and disturb its shape so the deformed surface is described by

R; = Ro(1 + e ), (16)

where Ry is the radius of the undisturbed jet, and o, k and &R, the growth rate, the
wavenumber and the amplitude of the axial disturbance respectively. The motion of
the fluid will be studied using a cylindrical coordinate system moving in the axial
direction at a constant speed equal to the velocity of the undisturbed jet. The goal
of the stability analysis is to find the values of k for which the disturbance grows in
time for any arbitrary small value of ¢, i.e. the values of k for which ¢ is positive.
Furthermore the analysis will yield the critical wavenumber k* that maximizes the
growth rate, and from k* we will obtain the critical wavelength 1" at which the jet is
most probable to break into droplets (1 = 2n/k"). Let us write the velocity vector u,
pressure p and surface charge o as power series of the small parameter &:

u = e (1)e” % + O(2), (17)
p = po +epi(r)e” 4 0(e7), (18)
o = o + eoe” TR 4 O(e?). (19)
The momentum and mass conservation equations for the first-order terms are
0
A 2w, (20)
ot 0
Veu =0, (21)

when v is the kinematic viscosity. The acceleration induced by a tangential electric
field acting upon either a volumetric or surface net charge distribution will not be
considered. The general solutions for the pressure and the radial and axial components
of the velocity consistent with the deformed surface (16) are (Chandrasekhar 1981)

u, =k {Ah(sr) — R(;_H Il(kr)} , (22)
Uy, =1 [Aslo(sr) — R()O_Hklo(kr)] , (23)
p1 = pRolI Io(kr), (24)

where A and Il are constants of integration, and I, stands for the Bessel function of
purely imaginary argument of order n that is regular at the origin. The scalar s is
defined by

S =k*+a/v. (25)

The set of differential equations (20) and (21) is complemented by the kinematic
boundary condition for the radial component of the velocity at the cylinder’s surface

u, = ek |AL{(sRy) — ROGH I, (kRo) otk
= % + uz% — SR()O'CM-HkZ + 0(82) (26)

ot 0z
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and two additional boundary conditions for the stresses on the cylinder’s surface:

ou.,  0u,
Tz = VP < 2z + or > =0 at r= R] (2761)
ou, 1 1
Ty = p+ 16E; — 2vp & =7 (R1 + R2> at r=R, (27b)

where R; and R, are the principal radii of curvature of the deformed cylinder, and
E, the component of the electric field normal to the jet surface. Upon inserting the
expressions for u, and u,, equation (27a) becomes

Rok?IT

g

¢ [AIl(sRO)(k2 +5%)—2 Il(kRO)] e’ 4+ 0(?) = 0. (28a)
On the other hand, if we linearize the curvature term and use (19) to write E, in
terms of the surface charge, equation (28a) is rewritten as

kRoIT

’ {pRon To(kRy) + “g%l —2vpk [Asla(sRo) - UIQ(kRO)}

21 7 .ot+ikz L, 2y _

+[1 — (kRy) ]Ro}e + (po—l-zgooco Ro) +0() =0. (28b)

Expression (25) and the terms of first order in equations (26), (28a) and (28b) can

be used to construct a system of four algebraic equations and six unknowns, A4, I1, s,

o1, 0 and k. Thus, once we determine the first-order term of the surface charge, the

required relation between growth rate and wavenumber (k) can be obtained. In the

following paragraphs we will use the three hypotheses for the surface charge in order
to compute o;.

Case 1. Charge bounded to the jet surface

If we assume that the electric field in the interior of the jet is negligible and
convection current dominates over conduction current on the jet surface, the following
continuity equation is obtained from charge conservation:

jt//s adS =0 (29a)

where d/dt is the material derivative on the two-dimensional space defined by the jet
surface. Upon manipulation of (29a) surface charge and velocity are related by (Aris
1989)

oo o da
I + V- (Vi) + %= 0 (29b)
where V; stands for the surface divergence, V; is the velocity of the fluid on the

surface and a is the determinant of the metric tensor for the two-dimensional space,

aR;\’
1 _—J
(%)
Equating the terms of the same order in (29b) the following expression is obtained
for the surface charge:

R2. (30)

a = ]

k. ;
o= oty — £0lg [1 + 1u1,z(Rj)] e’k L 0(). (31)
o
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We now use this result to eliminate A and IT from (26), (28a) and (28b) and write

a&% =y —x% (32)
2 )I 1(x) [ 2xy L)L (y)]
Io(x) (x* +y3) [L()L

_ Li(x) x* v’ Li(x) v Lo(y)
= = S U S [1 e I

y =sRy, x=kR,. (34a,b)
These algebraic equations can be solved to obtain the desired relation o(k,J, V),
where the viscosity, J, and charge, ¥, parameters are defined by

R

J= % (35)
2

— “;)TO (36a)

The viscosity parameters for the cone-jets studied in this article are of order one or
smaller, reaching a value as low as 0.06 for the lowest flow rates of TBP1. Thus, the
breakup of these jets is strongly viscous. On the other hand, it is worth mentioning
that the charge parameter is conveniently written in terms of the current and the
volumetric flow rate emitted by the cone-jet as

I’R}

= 1075 (36b)
Notice that the equilibrium between normal stresses on the surface of the undisturbed
jet constrains the charge parameter to be smaller than 2. We will show that our jets
are charged well below the ‘Rayleigh’ limit of ¥ = 2. Indeed, typical values for the
charge parameter of these cone-jets are of the order of 0.25, i.e. approximately 12%
of the Rayleigh limit. Despite this, most droplets of the electrospray are charged to a
larger fraction of their Rayleigh limit (de Juan & Fernandez de la Mora 1997 record
some electrospray droplets with a net charge at the Rayleigh limit). Using (36a) to
define a charge parameter for a drop, ¥, based on its radius R; and surface charge,
the droplet will reach its Rayleigh limit when ¥, = 4. Because the specific charge
of the fluid remains almost constant upon jet breakup, the charge parameters of the
droplet and the jet are related by ¥,;/¥ = (2/3)(Rs/Ro)>. When the mean droplet
radius is considered, (R;)/Ry is always larger than 1.89, a ratio associated with the
inviscid limit. For the viscous jets considered here, (R;)/ Ry is in the neighbourhood of
2.6, and for the larger droplets of the distribution R;/Ry is even larger. This explains
why the electrospray droplets can be close to the Rayleigh limit while the jet is much
less charged.

Case 2. Constant volumetric charge &

When this hypothesis is considered the expression for the surface charge is readily
obtained from geometric considerations alone:

o = %éoR‘, (37)

% = oy = 3ERo (38)
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After some manipulation, our system of algebraic is reduced to the following, more
compact, set of relations: equation (32)

R

v

2 2
e

and

2,2 2 I} (x) _ 2xy II(X)IQ(J’):| A 4
2O T e teony) ~ % )
_ 2 hix) Ii(x)
=J {x(l X )Io(x) + Txlo(x) (39)

Case 3. Equipotential breakup
We write the electric potential as a power series:

¢ = ¢po(r) + ¢ ()e” " + O(2), (40)

where the function ¢ is a solution of Laplace’s equation that must remain constant
on the disturbed jet surface (we can always set this constant to be zero ¢(R;) = 0).
The first term on the right-hand side of (40) is

$o(r) = ciIn(r/Ro). (41)

The integration constant ¢; is given by the value of the electric field on the undisturbed
jet surface

N d¢go S )
E.(Ry) = T v R & (42)
On the other hand, ¢(r) is the solution of the Bessel equation
d*¢r 1 déy
aGr T rdwn 0 =0 (43a)
¢1 = calo(kr) + c3Ko(kr), (43b)

where ¢, is zero because the electrical potential is regular outside the jet, and c; is
found by imposing ¢ to be zero in the deformed jet surface. To first order, c; is given
by
%o
Ko(kRo)eo'
Once the functional form of the electrical potential is known, (42) is used again to
find the expression for the surface charge in the equipotential breakup:

(44)

C3

d¢ xK{(kRyo) A
— E(R:) = —en—— — _ 1 ot+ikz '2 4
o= 2E(R) = —eo N %y — 8% [ + KokRy) | © + 0(¢), (45)
and with this information the implicit relation for a(kRy) is written as equation (32)
R} _ 22
o v - y X,

and

2>c2(x2 + yz)

I} (x) . 2xy II(X)III(J/)}_ 4 .4
() [1 @+ Lohy| ¢ Y

B o) xi(x) xKj(x)
_J{x(l xz)lo(x) '4 o) {1+ KO‘EX)]}. (46)
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In figure 15 we plot the dispersion relation for the three breakup hypotheses
considered above. The a(kRy) curves are computed for fixed values of the viscosity
and charge parameters, J and ¥. Notice that the growth rates associated with the
cases of constant volumetric charge and charge bounded to the surface are similar,
and quite different from the results for equipotential breakup. For constant volumetric
charge and charge bounded to the surface, the presence of charge always speeds up the
jet breakup in the range of J of figure 15. In an equipotential jet, surface charge slows
down the growth rate of small wavenumbers, and speeds up the breakup associated
with larger k. For the three cases of electrification, wavelengths shorter than 2nR, are
unstable, which is not possible for uncharged jets.

The modelling of the surface charge also affects the abscissa position of the maxima
of the dispersion relation. This is shown in figure 16, where we plot the critical droplet
radius for capillary breakup as a function of the viscosity and charge parameters, for
the three electrification cases. Critical wavelength and droplet radius are related by

. Ju\ 1/3
Ri _ (3A> ) (47)
Ro 4 Ry

The critical radius of the droplets produced in the breakup of electrified jets is slightly
smaller than their uncharged counterparts; the larger the charge parameter the smaller
the critical droplet radius. In the case of uncharged jets (47) asymptotes to 1.89 for
large J and increases steeply for J < 1. In fact, for very viscous jets the dispersion
relation does not have a maximum but the growth rate increases monotonically for
decreasing wavenumbers (Chandrasekhar 1981). We observe in figure 16 that charged
jets exhibit a similar trend. The differences in the curves (R;)/Ry versus J for different
electrification hypotheses are generally small. However, for J <1 and ¥ = 0.3 the
curve associated with the equipotential breakup clearly separates from the line for
uncharged breakup, yielding droplets much smaller than those predicted by either
the uncharged, constant volumetric charge or charge bounded to surface solutions.
Mean droplet radii measured for several electrosprays with the capacitive detector
are also shown in figure 16. For reference, measurements of droplet mean radius,
charge and specific charge, along with (R;)/Rp and viscosity and charge parameters
are collected in table 4. We have used the values of the jet radius at the breakup
point, Ry, instead of the “‘undisturbed’ jet’s radius, Ry, to compute J and ¥. Note that
the charge parameter is relatively small in all cases, well below the Rayleigh limit
of ¥ = 2. On the other hand viscosity plays a considerable role in the breakup of
cone-jets of moderately and highly conductive liquids, as indicated by the low values
of J in table 4 (for the lowest flow rate of TBP1 in table 2 the viscosity parameter
is 0.06). Returning to figure 16, it is observed that our experimental data for the
droplet mean radius fall above the theoretical predictions, the difference being ~ 15%
typically. This moderate disagreement could be due to several reasons. The inclusion
of second-order effects in the breakup model might be necessary for attaining a
more precise description. The effect of the axial electric field, induced by external
electrodes and the charge on the jet, was not considered in any of the electrification
cases we have studied. Most likely, the main factor causing the disagreement is our
underestimate of the jet radius, Ry = (Q/nwg)"/> = R, computed with the velocity of
the jet at the jet breakup location. Notice that at this point the surface disturbances
are fully developed, and it is apparent that the velocity used to estimate R, should
be taken somewhere upstream of the breakup location, where the disturbance begins
to grow. Hence, the appropriate value for R, should be larger than Rgz. From the
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FIGURE 15. Dispersion relation for capillary breakup. We plot the growth rate in units of v/R3
(y-axis) versus the wavenumber in units of 1/Ry (x-axis). In each graph we draw the dispersion
relations for the three breakup hypotheses, i.e. charge bounded to jet’s surface (C1), constant
volumetric charge (C2), and equipotential breakup (C3). The viscosity parameter J is (a) 10, (b) 1,
and (c¢) 0.1, while different charge parameters ¥ are associated with each curve.
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FIGURE 16. Droplet mean radius as a function of the viscosity parameter J. The droplet radius is
given in units of the jet radius, Ry. The three breakup hypotheses are shown, as well as different
values of the charge parameter ¥. We also plot experimental values of (R;)/Ry.

Solution  Q(m*s™)  (Ry)(um) {g)(C) (a/m)(Ckg™)  (R)/Ry  J ¥

TBP4  2.06 x 107! 0.85 5.96 x 1071 236 2.50 0.71 020
TBP4 286 x 107! L11 1.01 x 1074 1.78 2.74 0.84 025
TBP4  3.67 x 107! 1.25 1.34 x 10714 1.66 2.69 097 030
TBP5  4.00x 107! 1.53 1.50 x 10714 1.01 2.69 118 020
TBP5 526 x 107! 175 1.96 x 1074 0.87 2.71 135 023
TBP5  7.83x 107! 2.05 2.59 x 107 0.71 2.52 1.69 030
TBP5  9.56 x 107! 2.14 2.83 x 107 0.69 2.44 183 030

TaBLE 4. Mean values of the radius, charge and specific charge of electrospray droplets obtained
with the capacitive detector, and jet viscosity and charge parameters.

discussion in § 3.1 we know that the radius of the jet varies along the reversible region
from approximately 1.35r, close to cone tip, to approximately 0.5r;; at the breakup.
An intermediate value of Ry = 0.57r;; would be sufficient to collapse the experimental
and model results in figure 16. Finally, the data in this figure cannot be used to
discriminate among the three different charging hypotheses because the differences
between the models are smaller than the difference between the experimental data
and the theoretical predictions.

We are now in a position to obtain an alternative scaling law for the mean diameter
of the main electrospray droplets. Because the volumetric charge in the reversible part
of the jet is approximately constant, and the kinetic term pv?/2 of the fluid at the
breakup location is much larger than its pressure, the velocity of the jet can be

approximated by
21 12
Up = (VA> (48)
pQ

where V, is the acceleration voltage of the jet. The radius of the jet is simply
Rp = (Q/mvp)"/?, and we use Rz and the functions plotted in figure 16 to obtain the
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droplet mean radius

1/4
pQ’
. 4

2V, ) (494)

(Ri) = h(J, ¥)Ry = h(J, ) (

Knowledge of Q, I, V, and the physical properties of the fluid suffices to determine
J and Y. Using the scaling law (12) for I, the droplet mean radius becomes

_ P81/2 e —1/4 Q5 v
<Rd>_h(J’lP)(2n2yl/2f(e)> V, <K> . (49b)

Note that this law for (Ry) is different from both (R;) ~ rj. and (R); ~ r;. The
dependence of V4 on Q does not account for the disagreement, because the relatively
small variations of ¥V — V3 observed in table 2 for a given solution and different Q
are further reduced by the small exponent, 1/4, acting on V,. The values of the jet
velocity listed in table 2 support expression (49b). Let us write the relation between
jet radius and flow rate, for a given solution, as Rz ~ Q*. Then, vz will increase with
Q if x < 1, vp will not depend on Q if x = 1, and vy will increase for diminishing
0 if x > % We see in table 2 that, for a given solution, vg increases when the
flow rate diminishes. Thus, the exponent x in the law Ry ~ Q* must be larger than
%. Finally, let us estimate V, from the data listed in table 2. V, is approximately
the difference between Vy — Vp and the voltage drop across the transition region,
A, which is a fraction of Vy — V. We have already pointed out that the stopping
potential of electrospray droplets for flow rates below that associated with the onset
of satellite droplet is a good estimate of A (Gamero-Castafio 1999). The stopping
potentials at low flow rates for solutions TBP1 to TBP5 are 110, 200, 340, 380 and
400 V respectively. Thus, V4 varies from approximately 500 V for TBP1 to 1200V for
TBPS.

Unfortunately, the first-order stability analysis we have carried out is only applicable
to the initial stages of the jet deformation, and cannot be used to describe its
complete evolution. In particular the analysis does not yield much information about
the formation of satellite droplets. We observed satellite droplets in much of the
electrosprays studied here. We measured the specific charge of these satellite droplets,
and found it to be larger by a factor between 3 and 6 than its main droplet
counterpart (see table 2). Despite its limitations, a first-order stability analysis offers
some guidance about the distribution of specific charge between main and satellite
droplets. The reasoning goes as follows: the volumetric charge of the main droplet
will be typically the volumetric charge at the hump of the wave disturbance, while
the volumetric charge of the satellite droplet is associated with the volumetric charge
at the neck of the disturbance. The expression for the volumetric charge is

E= T o — o)™+ O, (50)
When o; < oy the volumetric charge grows at the neck of the waves and decreases
at the hump. If the analysis showed this ordering for «; and oy during the initial
evolution of the breakup, then we could guess that the volumetric charge of satellites
will be larger than that of the main droplets. The opposite holds for o; > op.
Figure 17 plots the ratio o; /o as a function of the wavenumber for two electrification
hypotheses, equipotential and charged bounded to surface. The third electrification
case, i.e. constant volumetric charge, is not relevant because we artificially impose the
volumetric charge to remain constant along the wave. Notice also that the first-order
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FiGure 17. First-order term of the surface charge as a function of the wavenumber. o; is given
in units of o, while the undisturbed jet radius is used to scale the wavenumber. We plot curves
associated with the equipotential breakup hypothesis (C3) and the charge bounded to surface
hypothesis (C1).

term of o for the case of charge bounded to the surface depends on the viscosity
parameter, and hence we use several values of J to compute the o;/oy curves in
figure 17. From figure 17 we infer that the equipotential breakup will yield satellite
droplets with a volumetric charge larger than main droplets. Only for very short
wavelengths would the situation be reversed. This phenomenon might be observed
using cone-jets of liquid metals with large charge parameters; it might be necessary
to impose a fast enough disturbing frequency as well. More interesting is the case
of charge bounded to surface, since it resembles the breakup of actual cone-jets
of dielectric liquids. It is observed that for the values of the viscosity parameters
characteristic of the electrosprays we have investigated, the ratio oy/cg is always
smaller than 1 and hence the volumetric charge of satellite droplets is expected to be
larger than that of the main drops. This agrees with the experimental observations.
However, it is noteworthy that for viscosity parameters larger than approximately 3000
the distribution of volumetric charge between satellite and main droplets is reversed
for every distorting wavelength. Unfortunately, the observation of this surprising
behaviour is likely to be difficult, since viscosity is always present and a viscosity
parameter as large as 3000 is not attained in actual cone-jets (e.g. for TBP a jet
with a radius of approximately 1 mm would be required). We have to point out
again that the ordering of o; and o derived from this analysis is only indicative, at
most, of the direction in which the volumetric charge is redistributed between satellite
and main droplets. Our analysis cannot predict the actual value of the volumetric
charge in satellite droplets because it is only applicable to the initial stages of the jet
deformation, and does not capture the formation of satellites.

4. Conclusions

We have used time-of-flight and energy analysis techniques to measure the voltage
drop, velocity and natural wavelength for varicose breakup of the jet emerging from
a Taylor cone. To the best of our knowledge, this is the first study in which any of
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these parameters has been experimentally determined in charged jets of submicron
radii. A large fraction of the available electrical potential is used to accelerate
the charged jet. For the less-conducting solutions, the voltage drop between the
electrospraying needle and the jet breakup point is as much as 90% of the voltage
of the needle. The specific kinetic energy of the fluid at the breakup position is much
larger than either the capillary or electric pressures. Our measurements offer a set
of well defined electro-fluid-dynamic parameters in a wide range of electrospraying
conditions. Other researchers working in analytical or numerical calculations of the
cone-jet electrospraying mode will find these experimental parameters to be of help
in modelling the problem, and ultimately, in confirming or rejecting the results from
their models.

The experimental measurement of droplet diameters is unlikely to solve the
question of whether the characteristic radii of the cone-jet transition region scales
with Q3(R ~ r}) or QY2(R ~ ;). Our determination of the jet radius at the breakup
point eliminates the indeterminacy associated with the formation of droplets, and
is probably more accurate than previous droplet measurements. Our data coincide
with Gafan’s prediction for the radius of the jet (Gafian-Calvo 1997a). On the other
hand, they also correlate well with the scaling of Fernandez de la Mora & Loscertales
(1994). Thus, our measurements do not provide a definitive proof for discarding either
rg Or rr.

The spread of the specific charge of the main droplets is narrower that the spread
of their diameters. This experimental observation contradicts the equipotential hy-
pothesis considered in previous calculations of the breakup of charged jets. We have
extended the classical instability analysis of viscous jets to consider the effect of electric
charge in varicose breakup. Three different hypotheses have been studied: breakup
with electric charge bounded to the jet surface, breakup at constant volumetric charge,
and an equipotential jet. Our measurements of mean radii agree tolerably well with
the predictions of the breakup model, although they are not sensitive enough to decide
among the three electrification hypotheses. Still, the analysis indicates that the choice
of charge model influences considerably the growth rate of the disturbing waves and
the natural wavelength for capillary breakup, especially for very viscous and highly
charged jets (J < 0.1, ¥ = 0.3). We find that the case of electric charge bounded to
the jet surface is, of the three hypotheses, the only one that explains the experimental
observations regarding the invariance of specific charge among main droplets and the
increased specific charge of satellite droplets. We anticipate that choosing the right
electrification hypothesis is paramount to investigating the effect of charge on cap-
illary breakup, especially for more elaborate nonlinear models in which parameters
such as the distribution of charge between main and satellite droplets are sought.

The effect of viscosity on the jet breakup is most important for moderately and
highly conducting solutions (K = 1073Sm™!), and/or very viscous liquids. In this
limit, the common practice of using the inviscid value of 1.89 for the ratio between
droplet and jet diameters leads to important errors.

We are indebted to Professors Fernandez de la Mora (Yale University) and
Martinez-Sanchez (Massachusetts Institute of Technology) for numerous discussions
on the subject. Many ideas regarding the interpretation and analysis of the stopping-
potential and time-of-flight curves originated in discussions between M.G.C. and
Fernandez de la Mora. This research is supported by a NASA Phase II SBIR
contract. We acknowledge gratefully the support given by Mr J. Sovey, the NASA
technical monitor of this contract.
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